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Under conditions typical of Harper–Dorn (H–D) creep the statistical slip-length may become
comparable to, or even exceed, the specimen diameter (a size effect). It is demonstrated that a
consequence of such a size effect is that the rates of dislocation storage and dynamic recovery are
reduced and the static recovery rate will exceed the dynamic one. Under such conditions, the analysis
shows that the creep rate will scale linearly with the applied stress, a characteristic of H–D creep.

I. INTRODUCTION network model and observations will be briefly reviewed
first.HARPER–DORN (H–D) creep was first reported in

1957 by Harper and Dorn,[1] who tested tensile specimens
of both single and polycrystalline pure aluminum (99.99) at
very low stresses and at temperatures near the melting point. II. NETWORK MODEL
Since then, the phenomenon has been subjected to numerous

Ardell and co-workers[9,10,11] have developed a networkexperimental and theoretical investigations. From the creep
model, which they claim explains both the transient primary-literature (for reviews, see References 2 through 5) the pri-
creep stage and the subsequent H–D creep. The transientmary characteristics of H–D creep can be summarized as
starts, according to their observations, with a dislocationfollows. (a) H–D creep is a steady-state phenomenon. (b)
burst on loading, resulting in an initial high strain rate andThe stress exponent is, as in Nabarro–Herring creep, equal
dislocation density, followed by a rapid decay in both quanti-to 1, but the kinetics can be more than two orders of magni-
ties.[10] This dislocation decay is interpreted in terms oftude faster than this variant of diffusion creep. (c) The activa-
network growth, a phenomenon, which according to experi-tion energy of H–D creep is close to that of self-diffusion.
mental observations, rapidly stagnates and renders a steady-(d) The phenomenon is commonly interpreted in terms of
state Frank network accommodating H–D creep. This stag-a dislocation mechanism. (e) The dislocation density is very
nation is interpreted in terms of a “frustration phenomenon”low (of the order 5 ? 107 m22) and independent of stress.
induced by enforcing Frank’s rule at the nodes.[10] The phys-Most recently, however, the phenomenon has been subjected
ics of this growth reaction is less clear. In terms of commonto a somewhat more critical re-examination. New experi-
interpretations of the growth of a two-dimensional network,ments cast doubt about its existence, as experiments by Blum
Figure 2(a), loops that are made up of many link-lengthet al.[6,7] on high purity aluminum showed no evidence of
segments will expand due to the shrinkage of those withthis low stress deviation from power-law creep (Figure 1).
fewer, in analogy with grain growth. The driving force forBlum et al. performed compression experiments on speci-
the reaction results from elastic interactions due to the dislo-mens of much larger cross section than commonly used;
cation stress fields in combination with nodes trying to main-accordingly, they opened for speculation the interpretation of
tain local line-tension equilibrium (Figure 2(b)). CollapseH–D creep as a size effect.[7] Ginter et al.[8] and Mohamed[5]

of such loops will, of course, never violate Frank’s rule, andsuggest that a pure dislocation mechanism may be insuffi-
without any other restriction imposed, this network can nevercient in the interpretation of this creep phenomenon, and
be “frustrated.” Network growth, however, may stagnate duethese authors also contribute to speculations about its tran-
to other reasons. In the present situation, the effect of thesient nature. The purpose of this article is to explore the
10 to 100 ppm of impurities in solid solution will havenew idea that the occurrence of H–D creep is a size effect.
such an effect. The problem, however, of understandingThe model to be developed is of a general character, but
the network model for H–D creep does not pertain to thethe application considered will be limited to H–D creep
establishment of a quasi stationary network due to disloca-observations in aluminum. Since the model to be presented
tion interactions and line-tension forces but to how suchrelies on a dislocation network description, the model and
a network can accommodate the observed metal plasticityobservations of Ardell and co-workers[9,10,11] are of some
without the operation of dislocation sources to maintain arelevance in this context; accordingly, some aspects of their
steady-state dislocation density. No simple physical picture
has been presented by Ardell and co-workers, as a back-
ground for their lengthy derivations developed to prove H–D
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Fig. 2—(a) Two-dimensional dislocation network. The individual loops
contain different numbers of links. (b) Instable loop consisting of three
segments. Solid lines represent nodal force equilibrium. Concurrent minimi-
zation of dislocation curvature (dashed lines) disturbs the nodal force bal-
ance, which leads to shrinkage and eventually collapse of the loop.

burst introducing a relatively high density of initially mobile
dislocations, as demonstrated by the investigation by Ardell
and co-workers. The way these dislocations contribute to
strengthening is given in terms of resolved shear stresses by

t 5 tt 1 t̂ [2]

where t is the applied stress, tt is the thermal stress compo-
nent, and t̂ is the athermal component. Since strengthening
under these conditions seems to be affected by subgrains to
a marginal extent only,[9] the athermal strength contributions
can be calculated on the basis of a one-parameter description
in a standard way; i.e., this component becomes

Fig. 1—Creep rate («̇) of pure Al as a function of normal stress (s) at 923
K, as reported in Ref. 7. Small circles: steady-state compressive creep rates t̂ 5 aGb!r [3]
measured with rod/tube extensometers,[6] large circles: compressive creep
rates measured with contactless laser extensometer at some distance from where a is a constant ('0.3), G is the shear modulus, and
steady state in primary transient creep,[7] and shaded area: tensile creep r is the density of stored dislocations.
rates from literature, as collected in Ref. 6. In order to follow the transition towards a steady-state

condition, the dislocation evolution equation needs to be
solved. This important problem has recently been considered

model[9,10,11] excludes mobile dislocations due to the opera- by Nes and co-workers,[13–16] from which treatments of only
tion of dislocation sources, the network itself must, in addi- the aspects relevant in the present context will be briefly
tion to being a stable Frank configuration, also act in a reviewed. Previous treatments, however, neglected the effect
dynamic way providing the mobile dislocations required in of static recovery on the network evolution during plastic
order to satisfy Eq. [1]. Or, in other words, the total number deformation, the reason for this being that the static contribu-
of segments in the Frank network must migrate in a concerted tion, for good reasons, is generally assumed to be signifi-
manner in such a way that the Orowan relation is obeyed. cantly lower than the dynamic one. This is, as will be shown
Selecting typical values for the strain rate and the dislocation subsequently, not necessarily the case under such extreme
density during H–D creep, this average speed becomes of conditions typical of H–D creep.
the order 10 mm/s. How such a migration pattern can be Under the dynamic conditions of metal plasticity, the net-
reconciled with a stable network is difficult to understand. work evolution (ṙ) is commonly analyzed in terms of the
Its consequence, in the absence of active sources, seems to combined result of athermal storage of dislocations (ṙ+) and
be that most segments will have left the specimen in about dynamic recovery (ṙ2); i.e.,
1000 seconds. However, as will be shown in the following

ṙ 5 ṙ1 1 ṙ2 [4]section, the observations of Ardell and co-workers can be
rationalized in terms of a size effect, the result of which is Dislocations are stored, due to interactions between already
the change in power-law creep exponent from 4 to 1, the stored segments in the Frank network and mobile disloca-
latter typical of H–D creep. tions, at the rate

ṙ1 5
2

bL
ġ, where L 5

C

!r
[5]III. HARPER–DORN CREEP, A SIZE EFFECT

A. Dislocation Structure Evolution and C . 1 is a numerical constant. The quantity L represents
the average distance a mobile dislocation migrates from theThe H–D creep experiments, conducted on nearly disloca-

tion-free specimens of high purity aluminum at temperatures source to the site where it is stored in the network; Reference
13 gives detailed statistical analysis.close to the melting point, result upon loading in a strain
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B. Static vs Dynamic Recovery due to line-tension forces will cause an additional recovery
rate written in the form

Dynamic recovery is commonly interpreted as the result
of local annihilation reactions between mobile dislocations

ṙ2
static 5 2BFNr 21Gb3

kT 2DSD [9]and stored dislocation segments in the Frank network.[13–18]

Under dynamic conditions such annihilation reactions are
assumed to destabilize the evolving network much more where DSD is the self-diffusion parameter, and BFN 5
effectively than network growth due to the stored line energy, B0

FN 2p / ln (1/b!r) where B0
FN is a parameter of order unity.

i.e., static recovery. In principle, however, the latter contribu- Under steady-state conditions (ṙ 5 0), combination of Eqs.
tion to recovery should be included, as was done in an earlier [2] and [4] through [8] (assuming tt ¿ t) results in a constitu-
treatment by Estrin.[19] Further, as will be demonstrated in tive law for power-law creep with the stress exponent equal
the following, under extreme conditions, such as close to to 4[13,14,16] when the effect of static recovery can be
the melting point (H–D creep), static recovery may even neglected; for further comments on the static recovery effect,
contribute more effectively to network growth than dynamic see the subsequent discussion. However, if the temperature
recovery. Accordingly, the total recovery reaction during is increased, approaching that of the melting point (H–D
metal plasticity becomes region), the dislocation density will decrease to very low

levels. The consequence becomes that the slip-length, L,
ṙ2 5 ṙ2

dynamic 1 ṙ2
static [6] will increase, and a situation will eventually emerge where

the slip-length becomes comparable to or even larger thanThe dynamic recovery model for a Frank dislocation net-
the specimen diameter. When such a situation arises, thework developed by Nes and Marthinsen[13–16] is based on
specimen size will affect both the storage rate of dislocationsthe assumption that network growth is controlled by the
and their dynamic recovery rate, i.e., a size effect hascollapse of dislocation dipoles of separation lg where the
been established.dipole configurations are the result of interactions between

the stored network dislocations and mobile ones. It follows
that lg is expected to be much smaller than the average C. A Size Effect
separation of stored dislocations, i.e., lg 5 1/j!r where j

The effect of reducing the specimen cross section on theis a scaling parameter À1. The collapse rate of dipoles will
substructure evolution can be analyzed in an approximateresult in a dynamic recovery rate given by
way by redefining Eq. [5] as follows:

ṙ2
dynamic 5 2vgr [7]

ṙ1 5 S
2

bL
ġ, with S 5

R2

((R 1 L)2 2 R2)l 1 R2 [10]where vg is the dislocation collapse frequency. In pure metals,
where climb is expected to be rate controlling, the collapse

where R is the specimen radius, and l is a parameter expectedreaction is expected to be driven by the sharp curvatures
to be of the order 1 (reflecting surface conditions). The idearesulting from dipole pinch-off reactions (References 14
behind this S parameter is that when the slip-length becomesand 16). The pinched-off segments will then rapidly climb
comparable to, or larger than, the specimen radius, then, Eq.sidewise due to large curvature forces. The collapse fre-
[6] no longer is valid since this relationship then will includequency then becomes vg 5 2vc!r, where vc is the climb
the effect of sources located in an area ((R 1 L)2 2 R2)speed given by
outside the specimen, i.e., phantom sources. By multiplying
by S at the right side in Eq. [5], the effect of these phantomvc 5 vDb2Br cj exp 12

USD

kT 2 2 sinh
Fb2

kT
[8]

sources is excluded.* This S parameter, however, should

*The introduction of this S parameter is consistent with the statistical
treatment of the dislocation storage problem presented in Reference 13, in' 2 vDb2Brcj 1Fb2

kT 2 exp 12
USD

kT 2 the sense that S (not S1/2) appears in Eq. [10]. An extension of this statistical
treatment to include the size effect is a difficult problem, indeed.

where vD 5 Debye frequency, USD 5 activation energy for
capture the salient physical consequence of a size effect withselfdiffusion and T 5 temperature.
the boundary conditions satisfied; i.e., when L ¿ R, S →The curved segments generate a driving force, F 5
1, and when L À R, S → 0; the latter case corresponds to2G/lg 5 2Gj!r, where G is the dislocation line tension (G 5
no storage at all, as expected.(Gb2 /4p (1 2 v) ln(1/b!r) ' 1.7Gb2, for r ' 107 m22), Br

The dynamic recovery rate will be affected in an analogousis a constant of order unity, and cj represents the concentra-
way. As the storage rate decreases, the density of dipoletion of trailing jogs controlling the climb rate of the curved
configurations will necessarily decrease, with the reductionsegments, i.e., cj 5 1/lj , where lj is the separation of trailing
rate per unit volume expected to scale with S3/2. And, itjogs, a quantity that is expected to scale with the dipole
follows that Eq. [7] takes the formseparation. Typical j values are of the order 30 (as discussed

subsequently), which implies that F ' 100 s b (s : applied ṙ2
dynamic 5 2S3/2vgr [11]

normal stress). Under such high driving forces, vacancy
equilibrium is not expected to be established at the jogs, This relationship satisfies the boundary conditions, i.e.,

if L ¿ R, Eq. [11] becomes equal to Eq. [7], and if L Àand it follows from Reference 12 that the jog climb-rate
under such conditions takes the form expressed by Eq. [8]. R, the dynamic recovery rate approaches zero. The static

recovery rate will, of course, not be affected by any sizeFor more details, see References 13 through 16.
It follows from the classic treatments by Friedel[20] and effect. By solving the microstructural evolution law under

steady-state conditions, ṙ 5 0, i.e., by combining Eqs. [4],Hirth and Lothe[12] that the growth of the Frank network
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[6], and [8] through [11], the effect of specimen size on the
creep rate becomes

ġ 5
bC
2

Gb3

kT 1BFN

S
r 3/2 DSD

[12]

1 !S 13.6 b3j 2Br r 2vD exp 12
USD

kT 22
As long as the thermal component of the flow stress is

negligible so that t̂ ' t, one finds from Eqs. [3] and [12] that

ġ 5
C

2a 3b2 1Gb3

kT 2FBFN

S 1 t
G2

3

DSD

[13]

1 !S
13.6b2

a
j 2Br 1 t

G2
4

vD exp 12
USD

kT 2G
Under conditions where L À R (and l ' 1), this equation

reduces to

ġ 5
C 3

2a
Gb3

kT
DSD

BFN

R2

t
G

[14]

which is a constitutive relationship rationalizing H–D creep.
The model prediction according to Eq. [13] is shown in

Figure 3 for a specimen diameter of 12 mm. The parameter
values used are DSD 5 1.76 ? 1025 exp (2USD/RT ) m2/s,[21]

USD 5 126153 J/mol,[21] G 5 2.99 ? 104 exp (25.4 ?
1024 ? T/k MPa, vD 5 1013 s21, a 5 0.3, C 5 100, B0

FN 5
0.01, Br 5 3, l 5 1, and j 5 30, (l, B0

FN, and Br are the
only fitting parameters involved, and the values used for Fig. 3—Steady-state creep rates as modeled by Eq. [13] for a specimen

with 12 mm diameter in dependence of normal stress at 923 K (ġ/«̇ 5 s/tthose are reasonable (References 14 and 16)). The choice
5 3). The contributions from dynamic and static recovery dominate at highwas done such that the model curve fits the low-stress tensile
and low stresses, respectively. The broken line shows the steady-state creepdata (shaded area) from specimens with diameters of about rate due to static recovery in the absence of a size effect. Shaded area: as1–2 inch. At relatively high stresses, the dynamic recovery in Fig. 1.

contribution is dominant; at low stresses, the static one domi-
nates. The broken line in Figure 3 shows the creep-rate
contribution caused by static recovery in the absence of a dislocation densities of 107 m22 or less (flow stresses of less
size effect, and the conclusion becomes that creep controlled than 1 g/mm2) probably is not possible without introducing
by static recovery will in general only be detectable under additional dislocations during demounting, transportation,
conditions where the specimen diameter becomes compara- and polishing of the specimens. A dislocation density of 5
ble to or smaller than the slip length (size effect). ? 107 m22, reported to be the typical level of H–D creep,

may simply reflect the lowest possible dislocation density
to be revealed by etch-pit techniques.

D. The Dislocation Density Aspect

As pointed out in the introduction, it follows from the
E. Metal Purity and Experimental Conditionscreep literature that a characteristic aspect of H–D creep is

a strain-rate invariant dislocation density. However, the size It needs to be pointed out that commercial high purity
grades of aluminum used in H–D creep experiments are noteffect model presented in the previous section does not pre-

dict such a creep-behavior in the H–D region. To the con- high purity metals in the true meaning of the word. This
becomes particularly relevant under such extreme condi-trary, by solving the substructure evolution law (Eq. [4])

under steady-state conditions and with L À R, the prediction tions, as those prevailing under H–D creep. This probably
explains the considerable spread in experimental data whenbecomes that !r } ġ. As pointed out in Reference 13, a

strain-rate, (or stress) invariant, constant steady-state dislo- comparing results from different groups, as shown in Figures
1 and 3. For an interesting review of impurity effects, seecation density cannot be reconciled with an appropriate solu-

tion of Eq. [4], i.e., such a condition is in conflict with Reference 5. In the investigation of a possible size effect,
it becomes important that only one grade of high puritythe laws of physics governing steady-state conditions. Two

possibilities then remain; either the H–D creep is not a true aluminum is tested.
steady-state phenomenon (a transient), or the dislocation
density measurements are not accurate enough. The latter

IV. DISCUSSIONpossibility needs to be considered for the following reason.
It is the personal experience of one of the present It has been shown that the high creep rates during H–D

creep may result from a size effect. The effect rests onauthors[13,22] that the handling of high purity aluminum with
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Fig. 5—Creep rate-strain curve from the compression test of Fig. 4. Creep
rate is calculated from the slope of the smoothed line in Fig. 4.

Fig. 4—Strain-time curve from the compression test with the specimen of
11 mm side length and aspect ratio of 2 at 923 K and 0.040 MPa with an
increase in stress to 0.055 MPa.

the assumption that the surface of Al specimens does not
represent a barrier dislocations. This assumption appears
reasonable in view of the extremly small volume fraction
of the oxide shell. It has also been confirmed experimentally
by Nøst and Nes,[22] their in-situ X-ray topography investiga-
tion of aluminum crystals under load clearly revealed that
the surfaces acted as perfect sinks for the mobile dislocations.
Note that the specimen size effect differs from the grain size
effect. Due to compatibility requirements, dislocations are
not free to leave the grains at the boundaries. In this case,
there is a reduction in slip distance, L, with reduction in
grain size, leading to a decrease in steady-state creep rate
in opposition to the specimen size effect occurring under
H–D creep conditions.[15,16]

The fit of the model curve to the experimental data in
Figure 3 becomes imperfect as the stress increases. The
reason is simply that the dynamic recovery term is connected
with a stress exponent of 4, while n 5 5 is observed experi-
mentally. There is a need to improve the description of creep
in that range. The important point to be emphasized here is
that a size effect is predicted in the low stress range of
H–D creep.

The size effect has to be checked by independent measure-
ments. It should be noted that in cubical compression speci-
mens the dislocations are not free to leave the surfaces
because their glide planes usually intersect the compression
faces. Therefore, tensile tests on long specimens with differ-
ent diameters appear to be most suitable to test the size Fig. 6—Model curves for specimens of 12 and 30 mm diameter and com-

pression creep data for specimens with 11 mm (large circles) and 29-mmeffect. Recently, McKnee et al.[23] have reported that they
(small circles) side length.could not generally confirm H–D creep except for a few

cases. Unfortunately, the specimen sizes were not given in
their work so that a size effect is not excluded.

An effort was made within the present work to demon- temperature by 4 K, which led to the thermal contraction
expected from the expansion coefficient of pure Al. Figurestrate the predicted size effect experimentally. For this pur-

pose, a tall compression specimen with a cross section of 4 shows the strain-time response. After nearly 300 hours,
the stress was increased to 0.055 MPa. Figure 5 shows the11 mm 3 11 mm and an aspect ratio of 2.3 was deformed

at 0.040 MPa and 923 K. Length measurement was done creep rate, «̇, as function of creep strain «. There is no
indication of a primary range of creep with decrease of «̇with a laser extensometer. The accuracy of the extensometer

was inadvertently demonstrated by a slow decrease in test within the small « interval investigated. The creep rates
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